Machine Learning Approaches for Analyzing Time Series from Sports

2 december 2021, Leuven & online
AI for Times Series seminarie
VAIA, Flanders AI Research & KU Leuven STADIUS

Currently, sports is an incredibly data rich domain as it is possible to collect massive amounts of data from both training sessions and matches. Typically, this data comes in the form of time series such as sensor data (e.g., accelerations, heart rate, GPS, etc.), event stream data, and optical tracking data.

The availability of this data has driven an explosion of interest in the automated analysis of sports. The goal of this talk is to provide an overview of this area with illustrative examples arising out of work done in my research group. I will specifically focus on three things. First, I will motivate and explain the reoccurring challenges that we have encountered when working with time series arising from the sports world. Second, I will discuss some of the work we have done in terms of analyzing sensor data about runners. Third, I will overview our work on analyzing time series arising from professional football matches

Jesse Davis is a Professor in the CS department at KU Leuven, Belgium. His research focuses on developing novel artificial intelligence, data science, machine learning, and data mining techniques, with a particular emphasis on analyzing structured data. Jesse’s passions lie in using these techniques to make sense of lifestyle data, address problems in (elite) athlete monitoring and detecting anomalies. Prior to joining KU Leuven, he obtained his bachelor’s degree from Williams College, his PhD from the University of Wisconsin, and completed a post-doc at the University of Washington.

Jesse has co-founded and serves on the board of directors for two startups: Activ84Health and RunEASI. Activ84Health is an awarding winning start-up that develops innovative technology to motivate nursing home residents to be physically active and improve their quality of life. RunEASI is a recently launched company that aims to provide real-time biomechanical feedback about running, particularly in the context of rehabilitation.

Praktisch

Inschrijven?

  • Prijs: gratis
  • Inschrijven is niet nodig, je kan gewoon naar de (online) lezing komen.
    Als je graag een reminder ontvangt, geef dan je contactgegevens hieronder op, dan ontvang je een melding op de dag van het seminarie.

AI for Time Series Seminars

Verscheidene onderzoeksgroepen in het Vlaams AI-onderzoeksprogramma verrichten onderzoek van wereldklasse in verband met tijdreeksen, zowel voor de ontwikkeling van algoritmes en tools, als voor een brede reeks toepassingen. In een recente rondvraag bij de Vlaamse AI-gemeenschap, bleek dat het onderwerp ‘tijdreeksen’ het meest gevraagd werd om toekomstige workshops en cursussen over te organiseren. Met deze seminariereeks komen we aan die vraag tegemoet en brengen we onderzoekers die geïnteresseerd zijn in, of onderzoek verrichten naar, tijdreeksen samen. We bieden hen en andere belangstellenden een gevarieerd programma met nationale en internationale sprekers.

Klaar om te starten?

Herinner me aan de AI for Time Series Seminars

Laat hier je contactgegevens achter om reminders aan de AI for Time Series seminaries te ontvangen.
We gebruiken deze gegevens alleen voor dit doel (lees ook onze Privacyverklaring & disclaimer). Je kan jezelf steeds uitschrijven via de uitschrijflink onderaan elke reminder.